Typical building-in detail for lightweight cladding, corrugated steel.

Commercial Series Louvre Window

Typical building-in detail for lightweight cladding, corrugated steel.

All detail other than “by Rylock” as per builder.

Fixings are shown to suit a site wind speed of N1. Head & sill fixings vary with product width. For more fixing detail please refer to the Australian Glass & Window Association technical document An Industry Guide to the Correct Fixing of Windows & Doors, which can be accessed via QR code at the bottom of the page or downloaded from www.rylock.com.au/resources/tech-downloads/fixing/.

A low expansion foam between reveals & framework can assist with installation & also minimises the chance of draughts.

Wide windows or doors may be seated into a bed of polyurethane adhesive on concrete slabs or similar.

The intellectual property on this drawing including rights in respect of copyright & patents are owned by Rylock Pty. Ltd. All rights reserved. Refer to relevant Standards & Codes for individual flashing & waterproofing requirements, which may include but are not limited to: the (current) National Construction Code, AS2047 Windows in Small Buildings - Selection & Installation, AS4773 Masonry in Small Buildings, AS4654 Waterproofing Membrane Systems for Exterior Use, etc. Rylock drawings are regularly updated. Visit www.rylock.com.au for current version.
Typical building-in detail for lightweight cladding, foam board

Commercial Series Double Hung Window

The intellectual property on this drawing including rights in respect of copyright & patents are owned by Rylock Pty. Ltd. All rights reserved. Refer to relevant Standards & Codes for individual flashing & waterproofing requirements, which may include - but are not limited to - (the current) National Construction Code, AS2047 Windows in Small Buildings - Selection & Installation, AS4773 Masonry in Small Buildings, AS4654 Waterproofing Membrane Systems for Exterior Use, etc. Rylock drawings are regularly updated. Visit www.rylock.com.au for current version.

* All detail other than "by Rylock" as per builder.

Fixings are shown to suit a site wind speed of N1. Head & sill fixings vary with product width. For more fixing detail please refer to the Australian Glass & Window Association technical document An Industry Guide to the Correct Fixing of Windows & Doors, which can be accessed via QR code at the bottom of the page or downloaded from www.rylock.com.au/resources/tech-downloads/fixing/.

A low expansion foam between reveals & framework can assist with installation & also minimises the chance of draughts.

Wide windows or doors may be seated into a bed of polyurethane adhesive on concrete slabs or similar.

Commercial Series Double Hung Window
Typical building-in detail for lightweight cladding, foam board
Typical building-in detail for brick veneer construction

Commercial Series Louvre Window

The intellectual property on this drawing including rights in respect of copyright & patents are owned by Rylock Pty. Ltd. All rights reserved. Refer to relevant Standards & Codes for individual flashing & waterproofing requirements, which may include - but are not limited to - (the current) National Construction Code, AS2047 Windows in Small Buildings - Selection & Installation, AS4773 Masonry in Small Buildings, AS4654 Waterproofing Membrane Systems for Exterior Use, etc. Rylock drawings are regularly updated. Visit www.rylock.com.au for current version.

SCALE 1 : 2 @ A3

HEAD & SILL DETAIL

- **WEEP HOLES**
- **SISALATION**
- **FLASHING (INDICATIVE ONLY)**
- **TIMBER OR METAL FRAMEWORK**
- **CAVITY**
- **STEEL UNTIL**
- **HEAD FLASHING (INDICATIVE ONLY)**
- **COMPATIBLE SEALANT**
- **WINDOW FRAME ** by Rylock
- **10mm MINIMUM DO NOT PACK**
- **# FIX @ 450mm CENTRES**
- **ARCHITRAVE**
- **INTERNAL LINING**
- **PACKER(S) AS REQUIRED**
- **TIMBER OR METAL FRAMEWORK**
- **CAVITY**
- **FLASHING (INDICATIVE ONLY)**
- **WINDOW FRAME ** by Rylock
- **COMPATIBLE SEALANT**
- **BRICKWORK**

JAMB DETAIL

- **ARCHITRAVE**
- **INTERNAL LINING**
- **SISALATION**
- **CAVITY**
- **FLASHING (INDICATIVE ONLY)**
- **WINDOW FRAME ** by Rylock
- **COMPATIBLE SEALANT**
- **BRICKWORK**

* All detail other than "by Rylock" as per builder.

Fixings are shown to suit a site wind speed of N1. Head & sill fixings vary with product width. For more fixing detail please refer to the Australian Glass & Window Association technical document An Industry Guide to the Correct Fixing of Windows & Doors, which can be accessed via QR code at the bottom of the page or downloaded from www.rylock.com.au/resources/tech-downloads/fixing/.

A low expansion foam between reveals & framework can assist with installation & also minimises the chance of draughts.

Wide windows or doors may be seated into a bed of polyurethane adhesive on concrete slabs or similar.
Typical building-in detail for cavity brick / blockwork with prepared openings

Commercial Series Double Hung Window

The intellectual property on this drawing including rights in respect of copyright & patents are owned by Rylock Pty. Ltd. All rights reserved. Refer to relevant Standards & Codes for individual flashing & waterproofing requirements, which may include - but are not limited to - (the current) National Construction Code, AS2047 Windows in Small Buildings - Selection & Installation, AS4773 Masonry in Small Buildings, AS4654 Waterproofing Membrane Systems for Exterior Use, etc. Rylock drawings are regularly updated. Visit www.rylock.com.au for current version.

* All detail other than "by Rylock" as per builder.

Fixings are shown to suit a site wind speed of N1. Head & sill fixings vary with product width. For more fixing detail please refer to the Australian Glass & Window Association technical document An Industry Guide to the Correct Fixing of Windows & Doors, which can be accessed via QR code at the bottom of the page or downloaded from www.rylock.com.au/resources/tech-downloads/fixing/.

A low expansion foam between reveals & framework can assist with installation & also minimises the chance of draughts.

Wide windows or doors may be seated into a bed of polyurethane adhesive on concrete slabs or similar.

Commercial Series Double Hung Window

Typical building-in detail for cavity brick / blockwork with prepared openings

rylock.com.au
Fixing options for installing products with short- or no- window reveals

Commercial Series Short Reveal Fixing

The intellectual property on this drawing including rights in respect of copyright & patents are owned by Rylock Pty. Ltd. All rights reserved. Refer to relevant Standards & Codes for individual flashing & waterproofing requirements, which may include - but are not limited to - (the current) National Construction Code, AS2047 Windows in Small Buildings – Selection & Installation, AS4773 Masonry in Small Buildings, AS4654 Waterproofing Membrane Systems for Exterior Use, etc. Rylock drawings are regularly updated. Visit www.rylock.com.au for current version.

*All detail other than "by Rylock" as per builder.

#Fixings are shown to suit a site wind speed of N1. Head & sill fixings vary with product width. For more fixing detail please refer to the Australian Glass & Window Association technical document An Industry Guide to the Correct Fixing of Windows & Doors, which can be accessed via QR code at the bottom of the page or downloaded from www.rylock.com.au/resources/tech-downloads/fixing/.

A low expansion foam between reveals & framework can assist with installation & also minimises the chance of draughts.

Wide windows or doors may be seated into a bed of polyurethane adhesive on concrete slabs or similar.

OPTION 1

OPTION 2

PHOTO SHOWING USE OF ANGLE BRACKETS

(architraves cut short for visibility)

FIXING OPTION 1: ANGLE BRACKETS

FIT BRACKETS TO WINDOW @ 450mm CENTRES, THEN FIX TO STUDWORK. NOTCH STUDS IF NECESSARY

TIMBER OR METAL FRAMEWORK

(OPTIONAL) LOW-EXPANSION FOAM INTO GAPS AROUND WINDOW PERIMETER

FIXING OPTION 2: BACK FIX

PACKER(S) AS REQUIRED

BACK-FIX THROUGH STUD @ 450mm CENTRES

TIMBER OR METAL FRAMEWORK

SCALE 1 : 2 @ A3
Plaster Reveal Detail

Typical building-in detail for achieving plaster reveals, Fixed Lite illustrated.

The intellectual property on this drawing including rights in respect of copyright & patents are owned by Rylock Pty. Ltd. All rights reserved. Refer to relevant Standards & Codes for individual flashing & waterproofing requirements, which may include - but are not limited to - (the current) National Construction Code, AS2047 Windows in Small Buildings - Selection & Installation, AS4773 Masonry in Small Buildings, AS4654 Waterproofing Membrane Systems for Exterior Use, etc. Rylock technical drawings are regularly updated. Visit www.rylock.com.au for current version.

* All detail other than "by Rylock" as per builder.
WHAT DO FLASHINGS DO?

A flashing is much more than a trim designed to improve appearance. Flashings help prevent moisture from entering the building envelope by deflecting water around penetrations. Some flashings shed the moisture created through condensation from within cavity walls. Any internal moisture can lead to structural rot, or mould within living areas. Flashings are typically fitted wherever there are penetrations through walls or roofs. Building wrap or sill flaps are not flashings by themselves.

WHAT ARE FLASHINGS MADE FROM?

Flashings need to absorb any building movement and often need to be formed around building elements. Consequently, they need some inherent flexibility. Typical sheet metal materials include galvanized steel, copper, lead, powder coated aluminium & ColorBond coated steel. Care must be taken when choosing metal flashings to prevent any electrochemical corrosion between dissimilar elements within the flashings, window/door frames and/or cladding(s). Plastic membranes are also popular for flashings, and are available in a variety of sizes. Liquid membrane systems are not flashings, but help block water where hard external wet areas (for example a tiled balcony) meet door sills.

WHERE DO FLASHINGS GET FITTED?

Flashings are typically fitted at the head, jambs & sill of all windows & doors. The head flashing is critical, as any water not deflected here may track down into the building. Head flashings should overhang the sides of any window or door, by differing amounts based on wall construction.

Jamb flashings prevent driven rain from working in around windows and doors, and also continue to exclude water previously deflected off the head flashing. Some Rylock products have an optional ‘frame infill’ which mimics the rebate found in timber windows for such flashings. This infill may be specified where it is deemed helpful to the flashing process.

Sill flashings prevent driven rain from entering under windows or doors. In sequence, they are also the exit point for water that has been deflected off the head flashing and onto the product, or diverted from the jamb flashings themselves. Sill flashings for doors prevent water from being drawn into subfloor areas or being absorbed into the slab foundation.

WHO DESIGNS & FITS FLASHINGS?

Flashings are designed by architects, designers, drafts-people or specified onsite by the builder. Flashing design needs to consider the specific product being fitted, its overall depth, any cavity dimension & the size / tolerance of the frame. Flashings need to be fitted by – or under the supervision of - the builder, as they need to be installed at different times during the build.

WHAT CODES DO FLASHINGS & MEMBRANES NEED TO MEET?

Designers or builders need to refer to relevant Standards and Codes for individual flashing and waterproofing requirements, which may include – but are not limited to – (the current) National Construction Code, AS2047 Windows in Small Buildings – Selection and Installation, AS4773 Masonry in Small Buildings, AS4654 Waterproofing Membrane Systems for Exterior Use, etc.